Exploring gas permeability of lipid membranes using coarse-grained molecular dynamics

نویسندگان

  • Huajun Yuan
  • Cynthia J. Jameson
  • Sohail Murad
چکیده

Molecular transport through biological membranes occurs in a range of interesting processes. To understand basic permeation functions of a biomembrane, we have carried out molecular dynamics (MD) simulations using dipalmitoylphosphatidylcholine (DPPC) as the bilayer membrane. By reducing the degrees of freedom and employing suitable potentials, a coarse-grained (CG) model can provide direct insight into collective phenomena in biological membranes at longer time and length scales. We used a CG model for DPPC bilayer, which had been parametrised to mimic fundamental structural properties. The permeation process of small molecules such as Xe, O2 and CO2 through the lipid bilayers was investigated. The density profiles and the local diffusion coefficients of the permeating gases across the bilayer membranes are obtained from the MD simulations. By studying gas molecules permeating through the lipid bilayer, we obtain an improved understanding of transport processes across membranes in biological systems in the absence of specialised channels. We also explore conditions that will give better control of the gas permeability and the possibility of membrane applications in environment-friendly separation processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach w...

متن کامل

The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study

Tethered bilayer lipid membranes (tBLMs) provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD) is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped F...

متن کامل

Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model

 We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...

متن کامل

Membrane Remodeling by Surface-Bound Protein Aggregates: Insights from Coarse-Grained Molecular Dynamics Simulation

The mechanism of curvature generation in membranes has been studied for decades due to its important role in many cellular functions. However, it is not clear if, or how, aggregates of lipid-anchored proteins might affect the geometry and elastic property of membranes. As an initial step toward addressing this issue, we performed structural, geometrical, and stress field analyses of coarse-grai...

متن کامل

Coarse-grained model for phospholipidÕcholesterol bilayer

We construct a coarse-grained ~CG! model for dipalmitoylphosphatidylcholine ~DPPC!/cholesterol bilayers and apply it to large-scale simulation studies of lipid membranes. Our CG model is a two-dimensional representation of the membrane, where the individual lipid and sterol molecules are described by pointlike particles. The effective intermolecular interactions used in the model are systematic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009